Academic Year 2023

Mathematics entry test – session 3

1. Let the discrete random variable X\mathrm{X} have the probability mass function

p(X=k)=n!k!(nk)!pk(1p)(nk)p(X=k)= \frac {n!}{k!(n-k)!} p^{k} (1-p)(n-k)

where kNk \in \mathbb{N}. The moment generating function M(t)M(t) of this mass function is:

(a) M(t)=k;M(t)=k; (b) M(t)=npk+etk;M(t) = npk + e^{tk}; (c) M(t)=(1p+petk)n;M(t)= (1-p+pe^ {tk})^ {n} ; (d) M(t)=ne2t/(2k).M(t)= ne^ {2t} / (2k).

2. Let unu_{n}, with nNn \in \mathbb{N}, such that u0=au_0 = a, with aa being a real positive number, and un+1=f(un)u_n + 1 = f(u_n)with f(x)=(x+16)/(x+7)f (x) = (x + 16)/(x + 7). Let vn=(un2)/(un+8)v_n = (u_n −2)/(u_n + 8). The relationship between vnv_n and vn+1v_{n + 1} reads:

(a) vn+1=vn/9;v_{n+1} = − v_n /9; (b) vn+1=f(vn);v_{n+1} = f (v_n ); (c) vn+1=avn;v_{n+1} = av_n; (d) vn+1=constant.v_{n+1} = constant.

3. Let I defined as:

I=010dxx2I = \int_{0}^{10} \frac {dx}{x-2}

Which of the following statement is true:

(a) I cannot be calculated; (b) ln4;ln 4; (c) I+;I \rightarrow + \infty; (d) ln2.ln2.

4. Let the vector field F=2xi+y2j+z2k\mathcal{F}=2x\vec{i}+y^{2}\vec{j}+z^{2}\vec{k} expressed in the canonical orthonormal basis of R3:(i ⁣:j ⁣:k)\mathbb{R}^{3} : ({\vec{i}}\!:{\vec{j}}\!:{\vec{k}}). Let S={(x,y,z)R3:x2+y2+z2=1}S\,=\,\{(x,y,z)\,\in\,\mathbb{R}^{\mathbf{{3}}}\,:x^{2}+y^{2}+z^{2}\,=\,1\} the unit sphere. The flow of the vector field F\mathcal{F} through the closed surface SS\,of the sphere SS\, is given by:

SFndS,{\oiint_{S}}\mathcal{F}\cdot\vec{n}\mathrm{d}S,

where n\vec{n} is the unit vector normal to the surface element dSdS\,. The result of the calculation is:

(a) ;→∞;

(b) 4π/3;4π/3;

(c) 8π/3;8π/3;

(d) 1.1.

5. Let A and B two anticommuting matrices such that A2=B2=1A^{2}=B^{2}=\textsf{\textbf{1}}, with 1\textsf{\textbf{1}} being the identity matrix, and [A,B]=2iC[A,B]=2i C with i2=1i^2 = \mathbb{-1}. The commutator [A,B][A,B] is equal to:

(a) 00;

(b) 2iA2iA;

(c) A-A;

(d) i1×B.i\textsf{\textbf{1}}\times B.

6. Consider two circles C1C1 and C2C2 both have the same radius: 10cm10 cm. The circles C1C1 and C2C2 overlap in such a fashion that their centers are 10cm10 cm apart. The calculation of the surface of the overlapping area is approximately, up to one decimal:

(a) 314.2cm2;314.2 \, cm^2; (b) 122.8cm2;122.8 \, cm^2; (c) 100.0cm2;100.0 \, cm^2; (d) 0\mathbb{0} since the distance between the centers is equal to the radius of each circle.

7. Let the matrix A\Alpha:

A=(2cosxisinx0isinx0isinx0isinx2cosx)A={\left(\begin{array}{l l l}{\sqrt{2}\cos x}&{i\sin x}&{0}\\ {i\sin x}&{0}&{-i\sin x}\\ {0}&{-i\sin x}&{-{\sqrt{2}}\cos x}\end{array}\right)}

where xx is a real number in the interval [0;2π],[0;2\pi], and ii is the complex number such that i2=1i^2 = −1. The matrix A\Alpha is diagonalizable on the following condition:

(a) for all x[0;π/4[]π/4;3π/4[]3π/4;2π]x\in[0;\pi/4[\cup]\pi/4;3\pi/4[\cup]3\pi/4;2\pi];

(b) for all x[0;2π];x\in[0;2\pi];

(c) only for x=π/4x = \pi/4 and x=3π/4;x = 3\pi/4;

(d) for xπ/2x\neq\pi/2 and x3π/2.x\neq3\pi/2.

8. Let xx a discrete random variable that takes the following values: 0, 1, and 2, with probabilities 12,14,\frac{1}{2}, \frac{1}{4}, and 14\frac{1}{4} respectively. The standard deviation is equal to:

(a) 1;1;

(b) 1/4;1/4;

(c) 11/2;{\sqrt{11}}/2;

(d) 0.0.

9. Let the 3 ×3 matrix A\Alpha

A=(010100002)A=\left( \begin{array}{c c c} {{0}} & {{1}} & {{0}} \\ {{-1}} & {{0}} & {{0}} \\ {{0}} & {{0}} & {{2}} \\ \end{array}\right)

The matrix A\Alpha is diagonalizable. Which of the following is the set of eigenvectors?

(a) {  [10i];    [10i];    [110]  };\left\{\; \left[\begin{array}{} {{1}} \\ {{0}} \\ {{-i}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{0}} \\ {{i}} \end{array}\right];\;\; \left[\begin{array}{} {{1}} \\ {{1}} \\ {{0}} \end{array}\right]\; \right\};

(b) {  [001];    [1i0];    [1i0]  };\left\{\; \left[\begin{array}{} {{0}} \\ {{0}} \\ {{1}} \end{array}\right];\;\; \left[\begin{array}{} {{1}} \\ {{i}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{1}} \\ {{-i}} \\ {{0}} \end{array}\right]\; \right\};

(c) {  [i10];    [110];    [1i1]  };\left\{\; \left[\begin{array}{} {{-i}} \\ {{1}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{1}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{1}} \\ {{i}} \\ {{1}} \end{array}\right]\; \right\};

(d) {  [11i];    [101];    [i01]  }.\left\{\; \left[\begin{array}{} {{-1}} \\ {{1}} \\ {{i}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{0}} \\ {{1}} \end{array}\right];\;\; \left[\begin{array}{} {{-i}} \\ {{0}} \\ {{1}} \end{array}\right]\; \right\}.

10. Consider the harmonic series S1S_1 and the alternating series S2S_2:

S1=n=11nandS2=n=1(1)n1nS_{1}=\sum_{n=1}^{\infty}{\frac{1}{n}}\quad{\mathrm{and}}\quad S_{2}=\sum_{n=1}^{\infty}{\frac{(-1)^{n-1}}{n}}

Which of the following is true?

(a) S1S_1 is divergent and S2=0S_2 = 0;

(b) S1S_1 is divergent and S2=ln2S_2 = ln2;

(c) S1=1S2S_1 = 1 −S_2;

(d) S1=π2/6S_1 = \pi ^ 2 /6 and S2=π/4S_2 = \pi/4

Last updated