Academic Year 2022 Sample

Mathematics entry test sample

1. Let ω1ω_1 the differential form: ω1=(y36xy2)dx+(3xy26x2y)dy\omega_{1}\,=\,(y^{3}-6x y^{2})\mathrm{d}x+(3x y^{2}-6x^{2}y)\mathrm{d}y. and ω2ω_2 the differential form: ω2=(3xy26x2y)dx+(y36xy2)dy\omega_{2}=(3x y^{2}-6x^{2}y)\mathrm{d}x+(y^{3}-6x y^{2})\mathrm{d}y. Which of these two forms ω1ω_1 or ω2ω_2 is an exact differential form on R2\R^2?

(a) ω1ω_1 ;

(b) ω2ω_2 ;

(c) both ω1ω_1 and ω2ω_2;

(d) neither of these two is a differential form.

2. The integral of ω1 on the arc circle delimited by the points A\Alpha in (1,2)(1, 2) and B\Beta in (3,4)(3, 4) is equal to:

(a) 0;

(b) -236;

(c) tends to ;

(d) π/2π/2.

3. Let ii the imaginary number such that i2=1.i^2 = −1. The result of the calculation of iii^i is:

(a) 1−1;

(b) cosi\cos i;

(c) nothing as the calculation is impossible;

(d) exp(π/2)\exp(−\pi/2).

4. Let unu_n, with nNn \in \N , such that u0=au_0 = a with aa being a real number, and un+1=f(un){u}_{n+1}\,=\,f\left({u}_{n}\right) with f(x)=(x+16)/(x+7)f(x)=\left(x+16\right)/\left(x+7\right). Let vn=(un2)/(un+8)v_{n}=\left(u_{n}-2\right)/\left(u_{n}+8\right). The relationship between vnv_n and vn+1v_{n+1} reads:

(a) vn+1=vn/9v_{n+1} = −v_n / 9;

(b) vn+1=f(vn)v_{n+1} = \,f\left({v}_{n}\right);

(c) vn+1=avnv_{n+1} = av_n ;

(d) vn+1=constantv_{n+1} = constant.

5. The integral 0xα1exdx\int_{0}^{\infty}x^{\alpha-1}e^{-x}\mathrm{d}x with α=3/2α = −3/2 is equal to:

(a) π3/4\sqrt[3]{\pi}/{4};

(b) −1/2;

(c) π4/3\sqrt[4]{\pi}/{3};

(d) 6.

6. Consider a pyramid with the following characteristics: it has a square base (ABCD)(ABCD) of side length 1, and its summit SS is such that the segment [SA][SA] is perpendicular to the plane (ABC)(ABC) and SA=1SA = 1. Let M a point of the segment [SC][SC] such that SM=aSC,\overrightarrow{S M}=\,a\overrightarrow{S C}, with 0a1,0\le a\le1, a real number. See a representation in Fig. 6. Consider the angle BMD^\widehat{BMD}; which of the following statement is correct:

(a) BMD^=aπ2\widehat{BMD}=a\frac{\pi}{2}

(b) cos(BMD^)=113a24a+2\cos(\widehat{\mathrm{BMD}})=1-\frac{1}{3a^{2}-4a+2}

(c) sin(BMD^)=1+13a24a+2\sin(\widehat{\mathrm{BMD}})=1+\frac{1}{3a^{2}-4a+2}

(d) None of the above.

7. Consider the same geometrical figure as above, with the same characteristics, and representated in Fig. 6. The scalar product MBMD\overrightarrow{MB}\cdot{\overline{}\overrightarrow{MD}} is equal to:

(a) a/2a/2;

(b) 3a2+4a+2;-3a^{2}+4a+2;

(c) 00;

(d) 3a24a+23a^2 − 4a + 2.

8. Let x a discrete random variable that takes the following values 0, 1 and 2 with probabilities 12,14,\frac{1}{2}, \frac{1}{4}, and 14,\frac{1}{4}, respectively. The standard deviation is equal to:

(a) 11;

(b) 1/41/4;

(c) 11/2\sqrt{11} / {2};

(d) 00.

9. Let X the discrete random variable have the probability mass function:

p(X=K)=eλλk/k!p(X=K)=e^{-\lambda}\lambda^{k}/k!

where kNk\in\mathbb{N}, and λR+,E(X)\lambda \in \R ^ {+*}\,, E(X) and V(X)V(X)denote the expectation value and the variance respectively. Which of the following statement is true?

(a) E(X) and V(X)=λ;{E(X)\to\infty\ \mathrm \, \text{and} \, \ V(X)=\lambda;}

(b) E(X)=λ and V(X);{E(X)=\lambda\ \mathrm \, \text{and}\ V(X)\to\infty;}

(c) E(X)=λ and V(X) =λ2{E(X)=\lambda\ \mathrm \, \text{and}\ V(X)\ = \lambda ^{2}}

(d) E(X)=V(X)=λE(X)=V(X)=\lambda

10. The integral 0sinxxdx,\int_{0}^{\infty}{\frac{sinx}{x}}\operatorname{dx}, is equal to:

(a) 00;

(b) \to \infin;

(c) 11;

(d) π/2\pi / 2

11. The sum n=112n\sum_{n=1}^{\infty}{\frac{1}{2^n}}is equal to:

(a) ;\to \infin;

(b) 11

(c) 00

(d) π2/6\pi ^ 2 / 6

12. Consider two circles C1C_1 and C2C_2; both have the same radius 10 cm. The circles C1C_1 and C2C_2 overlap in such a fashion that their centers are 10 cm apart. The calculation of the surface of the overlapping area is approximately, up to one decimal:

(a) 314,2cm2314,2 \, cm ^ 2

(b) 100.0cm2100.0 \, cm ^ 2

(c) 122.8cm2122.8 \, cm ^ 2

(d) 00 since the distance between the centers is equal to the radius of each circle.

13. Let the matrix A\Alpha:

A=(2cosxisinx0isinx0isinx0isinx2cosx)A=\left( \begin{array}{c c c} {{\sqrt{2}\cos x}} & {{i\sin x}} & {{0}} \\ {{i\sin x}} & {{0}} & {{-i\sin x}} \\ {{0}} & {{-i\sin x}} & {{-\sqrt{2}\cos x}} \end{array}\right)

where xx is a real number in the interval [0;2π][0; 2\pi] and ii is the complex number such that i2=1i^2 = −1. The matrix A\Alpha is diagonalizable on the following condition:

(a) only for x=π/4andx=3π/4x = \pi/4 \, \text{and} \, x = 3\pi/4;

(b) for all x[0;2π]x \in [0; 2\pi ];

(c) for all x[0;π/4[]π/4;3π/4[]3π/4;2πx \in [0 \text{;} \, \pi/4 \, [\,\cup\,] \, \pi / 4 \, ;\, 3\pi /4 \, [\,\cup\,] \, 3\pi / 4 \,;\, 2\pi

(d) for xπ/2andx3π/2x\neq\pi/2 \, \text{and} \, x\neq3\pi/2

14. Let 3 × 3 matrix A\Alpha:

A=(211121112)A={\left(\begin{array}{l l l}{2}&{-1}&{-1}\\ {-1}&{2}&{-1}\\ {-1}&{-1}&{2}\end{array}\right)}

The matrix A\Alpha is diagonalizable. One eigenvalue has multiplicity 1 and the other has multiplicity 2. Which of the following is the set of eigenvectors?

(a) {  [100];    [101];    [110]  };\left\{\; \left[\begin{array}{} {{-1}} \\ {{0}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{0}} \\ {{1}} \end{array}\right];\;\; \left[\begin{array}{} {{1}} \\ {{1}} \\ {{0}} \end{array}\right]\; \right\};

(b) {  [110];    [110];    [111]  };\left\{\; \left[\begin{array}{} {{-1}} \\ {{1}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{1}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{1}} \\ {{1}} \\ {{1}} \end{array}\right]\; \right\};

(c) {  [110];    [101];    [111]  };\left\{\; \left[\begin{array}{} {{-1}} \\ {{1}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{0}} \\ {{1}} \end{array}\right];\;\; \left[\begin{array}{} {{1}} \\ {{1}} \\ {{1}} \end{array}\right]\; \right\};

(d) {  [110];    [101];    [101]  }.\left\{\; \left[\begin{array}{} {{-1}} \\ {{1}} \\ {{0}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{0}} \\ {{1}} \end{array}\right];\;\; \left[\begin{array}{} {{-1}} \\ {{0}} \\ {{1}} \end{array}\right]\; \right\}.

15. Let the vector field F=2xi+y2j+z2k\mathcal{F}=2x\vec{i}+y^{2}\vec{j}+z^{2}\vec{k} expressed in the canonical orthonormal basis of R3:(i ⁣:j ⁣:k)\mathbb{R}^{3} : ({\vec{i}}\!:{\vec{j}}\!:{\vec{k}}). Let S={(x,y,z)R3:x2+y2+z2=1}S\,=\,\{(x,y,z)\,\in\,\mathbb{R}^{\mathbf{{3}}}\,:x^{2}+y^{2}+z^{2}\,=\,1\} the unit sphere. The flow of the vector field F\mathcal{F} through the closed surface SS\,of the sphere SS\, is given by:

SFndS,{\oiint_{S}}\mathcal{F}\cdot\vec{n}\mathrm{d}S,

where n\vec{n} is the unit vector normal to the surface element dSdS. The result of the calculation is:

(a) \to \infin

(b) 4π/34\pi / 3

(c) 8π/38 \pi / 3

(d) 11

Last updated